// cuon-matrix.js (c) 2012 kanda and matsuda /** * This is a class treating 4x4 matrix. * This class contains the function that is equivalent to OpenGL matrix stack. * The matrix after conversion is calculated by multiplying a conversion matrix from the right. * The matrix is replaced by the calculated result. */ /** * Constructor of Matrix4 * If opt_src is specified, new matrix is initialized by opt_src. * Otherwise, new matrix is initialized by identity matrix. * @param opt_src source matrix(option) */ var Matrix4 = function (opt_src) { var i, s, d; if ( opt_src && typeof opt_src === "object" && opt_src.hasOwnProperty("elements") ) { s = opt_src.elements; d = new Float32Array(16); for (i = 0; i < 16; ++i) { d[i] = s[i]; } this.elements = d; } else { this.elements = new Float32Array([ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, ]); } }; /** * Set the identity matrix. * @return this */ Matrix4.prototype.setIdentity = function () { var e = this.elements; e[0] = 1; e[4] = 0; e[8] = 0; e[12] = 0; e[1] = 0; e[5] = 1; e[9] = 0; e[13] = 0; e[2] = 0; e[6] = 0; e[10] = 1; e[14] = 0; e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; return this; }; /** * Copy matrix. * @param src source matrix * @return this */ Matrix4.prototype.set = function (src) { var i, s, d; s = src.elements; d = this.elements; if (s === d) { return; } for (i = 0; i < 16; ++i) { d[i] = s[i]; } return this; }; /** * Multiply the matrix from the right. * @param other The multiply matrix * @return this */ Matrix4.prototype.concat = function (other) { var i, e, a, b, ai0, ai1, ai2, ai3; // Calculate e = a * b e = this.elements; a = this.elements; b = other.elements; // If e equals b, copy b to temporary matrix. if (e === b) { b = new Float32Array(16); for (i = 0; i < 16; ++i) { b[i] = e[i]; } } for (i = 0; i < 4; i++) { ai0 = a[i]; ai1 = a[i + 4]; ai2 = a[i + 8]; ai3 = a[i + 12]; e[i] = ai0 * b[0] + ai1 * b[1] + ai2 * b[2] + ai3 * b[3]; e[i + 4] = ai0 * b[4] + ai1 * b[5] + ai2 * b[6] + ai3 * b[7]; e[i + 8] = ai0 * b[8] + ai1 * b[9] + ai2 * b[10] + ai3 * b[11]; e[i + 12] = ai0 * b[12] + ai1 * b[13] + ai2 * b[14] + ai3 * b[15]; } return this; }; Matrix4.prototype.multiply = Matrix4.prototype.concat; /** * Multiply the three-dimensional vector. * @param pos The multiply vector * @return The result of multiplication(Float32Array) */ Matrix4.prototype.multiplyVector3 = function (pos) { var e = this.elements; var p = pos.elements; var v = new Vector3(); var result = v.elements; result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[8] + e[11]; result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[9] + e[12]; result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + e[13]; return v; }; /** * Multiply the four-dimensional vector. * @param pos The multiply vector * @return The result of multiplication(Float32Array) */ Matrix4.prototype.multiplyVector4 = function (pos) { var e = this.elements; var p = pos.elements; var v = new Vector4(); var result = v.elements; result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[8] + p[3] * e[12]; result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[9] + p[3] * e[13]; result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + p[3] * e[14]; result[3] = p[0] * e[3] + p[1] * e[7] + p[2] * e[11] + p[3] * e[15]; return v; }; /** * Transpose the matrix. * @return this */ Matrix4.prototype.transpose = function () { var e, t; e = this.elements; t = e[1]; e[1] = e[4]; e[4] = t; t = e[2]; e[2] = e[8]; e[8] = t; t = e[3]; e[3] = e[12]; e[12] = t; t = e[6]; e[6] = e[9]; e[9] = t; t = e[7]; e[7] = e[13]; e[13] = t; t = e[11]; e[11] = e[14]; e[14] = t; return this; }; /** * Calculate the inverse matrix of specified matrix, and set to this. * @param other The source matrix * @return this */ Matrix4.prototype.setInverseOf = function (other) { var i, s, d, inv, det; s = other.elements; d = this.elements; inv = new Float32Array(16); inv[0] = s[5] * s[10] * s[15] - s[5] * s[11] * s[14] - s[9] * s[6] * s[15] + s[9] * s[7] * s[14] + s[13] * s[6] * s[11] - s[13] * s[7] * s[10]; inv[4] = -s[4] * s[10] * s[15] + s[4] * s[11] * s[14] + s[8] * s[6] * s[15] - s[8] * s[7] * s[14] - s[12] * s[6] * s[11] + s[12] * s[7] * s[10]; inv[8] = s[4] * s[9] * s[15] - s[4] * s[11] * s[13] - s[8] * s[5] * s[15] + s[8] * s[7] * s[13] + s[12] * s[5] * s[11] - s[12] * s[7] * s[9]; inv[12] = -s[4] * s[9] * s[14] + s[4] * s[10] * s[13] + s[8] * s[5] * s[14] - s[8] * s[6] * s[13] - s[12] * s[5] * s[10] + s[12] * s[6] * s[9]; inv[1] = -s[1] * s[10] * s[15] + s[1] * s[11] * s[14] + s[9] * s[2] * s[15] - s[9] * s[3] * s[14] - s[13] * s[2] * s[11] + s[13] * s[3] * s[10]; inv[5] = s[0] * s[10] * s[15] - s[0] * s[11] * s[14] - s[8] * s[2] * s[15] + s[8] * s[3] * s[14] + s[12] * s[2] * s[11] - s[12] * s[3] * s[10]; inv[9] = -s[0] * s[9] * s[15] + s[0] * s[11] * s[13] + s[8] * s[1] * s[15] - s[8] * s[3] * s[13] - s[12] * s[1] * s[11] + s[12] * s[3] * s[9]; inv[13] = s[0] * s[9] * s[14] - s[0] * s[10] * s[13] - s[8] * s[1] * s[14] + s[8] * s[2] * s[13] + s[12] * s[1] * s[10] - s[12] * s[2] * s[9]; inv[2] = s[1] * s[6] * s[15] - s[1] * s[7] * s[14] - s[5] * s[2] * s[15] + s[5] * s[3] * s[14] + s[13] * s[2] * s[7] - s[13] * s[3] * s[6]; inv[6] = -s[0] * s[6] * s[15] + s[0] * s[7] * s[14] + s[4] * s[2] * s[15] - s[4] * s[3] * s[14] - s[12] * s[2] * s[7] + s[12] * s[3] * s[6]; inv[10] = s[0] * s[5] * s[15] - s[0] * s[7] * s[13] - s[4] * s[1] * s[15] + s[4] * s[3] * s[13] + s[12] * s[1] * s[7] - s[12] * s[3] * s[5]; inv[14] = -s[0] * s[5] * s[14] + s[0] * s[6] * s[13] + s[4] * s[1] * s[14] - s[4] * s[2] * s[13] - s[12] * s[1] * s[6] + s[12] * s[2] * s[5]; inv[3] = -s[1] * s[6] * s[11] + s[1] * s[7] * s[10] + s[5] * s[2] * s[11] - s[5] * s[3] * s[10] - s[9] * s[2] * s[7] + s[9] * s[3] * s[6]; inv[7] = s[0] * s[6] * s[11] - s[0] * s[7] * s[10] - s[4] * s[2] * s[11] + s[4] * s[3] * s[10] + s[8] * s[2] * s[7] - s[8] * s[3] * s[6]; inv[11] = -s[0] * s[5] * s[11] + s[0] * s[7] * s[9] + s[4] * s[1] * s[11] - s[4] * s[3] * s[9] - s[8] * s[1] * s[7] + s[8] * s[3] * s[5]; inv[15] = s[0] * s[5] * s[10] - s[0] * s[6] * s[9] - s[4] * s[1] * s[10] + s[4] * s[2] * s[9] + s[8] * s[1] * s[6] - s[8] * s[2] * s[5]; det = s[0] * inv[0] + s[1] * inv[4] + s[2] * inv[8] + s[3] * inv[12]; if (det === 0) { return this; } det = 1 / det; for (i = 0; i < 16; i++) { d[i] = inv[i] * det; } return this; }; /** * Calculate the inverse matrix of this, and set to this. * @return this */ Matrix4.prototype.invert = function () { return this.setInverseOf(this); }; /** * Set the orthographic projection matrix. * @param left The coordinate of the left of clipping plane. * @param right The coordinate of the right of clipping plane. * @param bottom The coordinate of the bottom of clipping plane. * @param top The coordinate of the top top clipping plane. * @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer. * @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer. * @return this */ Matrix4.prototype.setOrtho = function (left, right, bottom, top, near, far) { var e, rw, rh, rd; if (left === right || bottom === top || near === far) { throw "null frustum"; } rw = 1 / (right - left); rh = 1 / (top - bottom); rd = 1 / (far - near); e = this.elements; e[0] = 2 * rw; e[1] = 0; e[2] = 0; e[3] = 0; e[4] = 0; e[5] = 2 * rh; e[6] = 0; e[7] = 0; e[8] = 0; e[9] = 0; e[10] = -2 * rd; e[11] = 0; e[12] = -(right + left) * rw; e[13] = -(top + bottom) * rh; e[14] = -(far + near) * rd; e[15] = 1; return this; }; /** * Multiply the orthographic projection matrix from the right. * @param left The coordinate of the left of clipping plane. * @param right The coordinate of the right of clipping plane. * @param bottom The coordinate of the bottom of clipping plane. * @param top The coordinate of the top top clipping plane. * @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer. * @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer. * @return this */ Matrix4.prototype.ortho = function (left, right, bottom, top, near, far) { return this.concat( new Matrix4().setOrtho(left, right, bottom, top, near, far) ); }; /** * Set the perspective projection matrix. * @param left The coordinate of the left of clipping plane. * @param right The coordinate of the right of clipping plane. * @param bottom The coordinate of the bottom of clipping plane. * @param top The coordinate of the top top clipping plane. * @param near The distances to the nearer depth clipping plane. This value must be plus value. * @param far The distances to the farther depth clipping plane. This value must be plus value. * @return this */ Matrix4.prototype.setFrustum = function (left, right, bottom, top, near, far) { var e, rw, rh, rd; if (left === right || top === bottom || near === far) { throw "null frustum"; } if (near <= 0) { throw "near <= 0"; } if (far <= 0) { throw "far <= 0"; } rw = 1 / (right - left); rh = 1 / (top - bottom); rd = 1 / (far - near); e = this.elements; e[0] = 2 * near * rw; e[1] = 0; e[2] = 0; e[3] = 0; e[4] = 0; e[5] = 2 * near * rh; e[6] = 0; e[7] = 0; e[8] = (right + left) * rw; e[9] = (top + bottom) * rh; e[10] = -(far + near) * rd; e[11] = -1; e[12] = 0; e[13] = 0; e[14] = -2 * near * far * rd; e[15] = 0; return this; }; /** * Multiply the perspective projection matrix from the right. * @param left The coordinate of the left of clipping plane. * @param right The coordinate of the right of clipping plane. * @param bottom The coordinate of the bottom of clipping plane. * @param top The coordinate of the top top clipping plane. * @param near The distances to the nearer depth clipping plane. This value must be plus value. * @param far The distances to the farther depth clipping plane. This value must be plus value. * @return this */ Matrix4.prototype.frustum = function (left, right, bottom, top, near, far) { return this.concat( new Matrix4().setFrustum(left, right, bottom, top, near, far) ); }; /** * Set the perspective projection matrix by fovy and aspect. * @param fovy The angle between the upper and lower sides of the frustum. * @param aspect The aspect ratio of the frustum. (width/height) * @param near The distances to the nearer depth clipping plane. This value must be plus value. * @param far The distances to the farther depth clipping plane. This value must be plus value. * @return this */ Matrix4.prototype.setPerspective = function (fovy, aspect, near, far) { var e, rd, s, ct; if (near === far || aspect === 0) { throw "null frustum"; } if (near <= 0) { throw "near <= 0"; } if (far <= 0) { throw "far <= 0"; } fovy = (Math.PI * fovy) / 180 / 2; s = Math.sin(fovy); if (s === 0) { throw "null frustum"; } rd = 1 / (far - near); ct = Math.cos(fovy) / s; e = this.elements; e[0] = ct / aspect; e[1] = 0; e[2] = 0; e[3] = 0; e[4] = 0; e[5] = ct; e[6] = 0; e[7] = 0; e[8] = 0; e[9] = 0; e[10] = -(far + near) * rd; e[11] = -1; e[12] = 0; e[13] = 0; e[14] = -2 * near * far * rd; e[15] = 0; return this; }; /** * Multiply the perspective projection matrix from the right. * @param fovy The angle between the upper and lower sides of the frustum. * @param aspect The aspect ratio of the frustum. (width/height) * @param near The distances to the nearer depth clipping plane. This value must be plus value. * @param far The distances to the farther depth clipping plane. This value must be plus value. * @return this */ Matrix4.prototype.perspective = function (fovy, aspect, near, far) { return this.concat(new Matrix4().setPerspective(fovy, aspect, near, far)); }; /** * Set the matrix for scaling. * @param x The scale factor along the X axis * @param y The scale factor along the Y axis * @param z The scale factor along the Z axis * @return this */ Matrix4.prototype.setScale = function (x, y, z) { var e = this.elements; e[0] = x; e[4] = 0; e[8] = 0; e[12] = 0; e[1] = 0; e[5] = y; e[9] = 0; e[13] = 0; e[2] = 0; e[6] = 0; e[10] = z; e[14] = 0; e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; return this; }; /** * Multiply the matrix for scaling from the right. * @param x The scale factor along the X axis * @param y The scale factor along the Y axis * @param z The scale factor along the Z axis * @return this */ Matrix4.prototype.scale = function (x, y, z) { var e = this.elements; e[0] *= x; e[4] *= y; e[8] *= z; e[1] *= x; e[5] *= y; e[9] *= z; e[2] *= x; e[6] *= y; e[10] *= z; e[3] *= x; e[7] *= y; e[11] *= z; return this; }; /** * Set the matrix for translation. * @param x The X value of a translation. * @param y The Y value of a translation. * @param z The Z value of a translation. * @return this */ Matrix4.prototype.setTranslate = function (x, y, z) { var e = this.elements; e[0] = 1; e[4] = 0; e[8] = 0; e[12] = x; e[1] = 0; e[5] = 1; e[9] = 0; e[13] = y; e[2] = 0; e[6] = 0; e[10] = 1; e[14] = z; e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; return this; }; /** * Multiply the matrix for translation from the right. * @param x The X value of a translation. * @param y The Y value of a translation. * @param z The Z value of a translation. * @return this */ Matrix4.prototype.translate = function (x, y, z) { var e = this.elements; e[12] += e[0] * x + e[4] * y + e[8] * z; e[13] += e[1] * x + e[5] * y + e[9] * z; e[14] += e[2] * x + e[6] * y + e[10] * z; e[15] += e[3] * x + e[7] * y + e[11] * z; return this; }; /** * Set the matrix for rotation. * The vector of rotation axis may not be normalized. * @param angle The angle of rotation (degrees) * @param x The X coordinate of vector of rotation axis. * @param y The Y coordinate of vector of rotation axis. * @param z The Z coordinate of vector of rotation axis. * @return this */ Matrix4.prototype.setRotate = function (angle, x, y, z) { var e, s, c, len, rlen, nc, xy, yz, zx, xs, ys, zs; angle = (Math.PI * angle) / 180; e = this.elements; s = Math.sin(angle); c = Math.cos(angle); if (0 !== x && 0 === y && 0 === z) { // Rotation around X axis if (x < 0) { s = -s; } e[0] = 1; e[4] = 0; e[8] = 0; e[12] = 0; e[1] = 0; e[5] = c; e[9] = -s; e[13] = 0; e[2] = 0; e[6] = s; e[10] = c; e[14] = 0; e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; } else if (0 === x && 0 !== y && 0 === z) { // Rotation around Y axis if (y < 0) { s = -s; } e[0] = c; e[4] = 0; e[8] = s; e[12] = 0; e[1] = 0; e[5] = 1; e[9] = 0; e[13] = 0; e[2] = -s; e[6] = 0; e[10] = c; e[14] = 0; e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; } else if (0 === x && 0 === y && 0 !== z) { // Rotation around Z axis if (z < 0) { s = -s; } e[0] = c; e[4] = -s; e[8] = 0; e[12] = 0; e[1] = s; e[5] = c; e[9] = 0; e[13] = 0; e[2] = 0; e[6] = 0; e[10] = 1; e[14] = 0; e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1; } else { // Rotation around another axis len = Math.sqrt(x * x + y * y + z * z); if (len !== 1) { rlen = 1 / len; x *= rlen; y *= rlen; z *= rlen; } nc = 1 - c; xy = x * y; yz = y * z; zx = z * x; xs = x * s; ys = y * s; zs = z * s; e[0] = x * x * nc + c; e[1] = xy * nc + zs; e[2] = zx * nc - ys; e[3] = 0; e[4] = xy * nc - zs; e[5] = y * y * nc + c; e[6] = yz * nc + xs; e[7] = 0; e[8] = zx * nc + ys; e[9] = yz * nc - xs; e[10] = z * z * nc + c; e[11] = 0; e[12] = 0; e[13] = 0; e[14] = 0; e[15] = 1; } return this; }; /** * Multiply the matrix for rotation from the right. * The vector of rotation axis may not be normalized. * @param angle The angle of rotation (degrees) * @param x The X coordinate of vector of rotation axis. * @param y The Y coordinate of vector of rotation axis. * @param z The Z coordinate of vector of rotation axis. * @return this */ Matrix4.prototype.rotate = function (angle, x, y, z) { return this.concat(new Matrix4().setRotate(angle, x, y, z)); }; /** * Set the viewing matrix. * @param eyeX, eyeY, eyeZ The position of the eye point. * @param centerX, centerY, centerZ The position of the reference point. * @param upX, upY, upZ The direction of the up vector. * @return this */ Matrix4.prototype.setLookAt = function ( eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ ) { var e, fx, fy, fz, rlf, sx, sy, sz, rls, ux, uy, uz; fx = centerX - eyeX; fy = centerY - eyeY; fz = centerZ - eyeZ; // Normalize f. rlf = 1 / Math.sqrt(fx * fx + fy * fy + fz * fz); fx *= rlf; fy *= rlf; fz *= rlf; // Calculate cross product of f and up. sx = fy * upZ - fz * upY; sy = fz * upX - fx * upZ; sz = fx * upY - fy * upX; // Normalize s. rls = 1 / Math.sqrt(sx * sx + sy * sy + sz * sz); sx *= rls; sy *= rls; sz *= rls; // Calculate cross product of s and f. ux = sy * fz - sz * fy; uy = sz * fx - sx * fz; uz = sx * fy - sy * fx; // Set to this. e = this.elements; e[0] = sx; e[1] = ux; e[2] = -fx; e[3] = 0; e[4] = sy; e[5] = uy; e[6] = -fy; e[7] = 0; e[8] = sz; e[9] = uz; e[10] = -fz; e[11] = 0; e[12] = 0; e[13] = 0; e[14] = 0; e[15] = 1; // Translate. return this.translate(-eyeX, -eyeY, -eyeZ); }; /** * Multiply the viewing matrix from the right. * @param eyeX, eyeY, eyeZ The position of the eye point. * @param centerX, centerY, centerZ The position of the reference point. * @param upX, upY, upZ The direction of the up vector. * @return this */ Matrix4.prototype.lookAt = function ( eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ ) { return this.concat( new Matrix4().setLookAt( eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ ) ); }; /** * Multiply the matrix for project vertex to plane from the right. * @param plane The array[A, B, C, D] of the equation of plane "Ax + By + Cz + D = 0". * @param light The array which stored coordinates of the light. if light[3]=0, treated as parallel light. * @return this */ Matrix4.prototype.dropShadow = function (plane, light) { var mat = new Matrix4(); var e = mat.elements; var dot = plane[0] * light[0] + plane[1] * light[1] + plane[2] * light[2] + plane[3] * light[3]; e[0] = dot - light[0] * plane[0]; e[1] = -light[1] * plane[0]; e[2] = -light[2] * plane[0]; e[3] = -light[3] * plane[0]; e[4] = -light[0] * plane[1]; e[5] = dot - light[1] * plane[1]; e[6] = -light[2] * plane[1]; e[7] = -light[3] * plane[1]; e[8] = -light[0] * plane[2]; e[9] = -light[1] * plane[2]; e[10] = dot - light[2] * plane[2]; e[11] = -light[3] * plane[2]; e[12] = -light[0] * plane[3]; e[13] = -light[1] * plane[3]; e[14] = -light[2] * plane[3]; e[15] = dot - light[3] * plane[3]; return this.concat(mat); }; /** * Multiply the matrix for project vertex to plane from the right.(Projected by parallel light.) * @param normX, normY, normZ The normal vector of the plane.(Not necessary to be normalized.) * @param planeX, planeY, planeZ The coordinate of arbitrary points on a plane. * @param lightX, lightY, lightZ The vector of the direction of light.(Not necessary to be normalized.) * @return this */ Matrix4.prototype.dropShadowDirectionally = function ( normX, normY, normZ, planeX, planeY, planeZ, lightX, lightY, lightZ ) { var a = planeX * normX + planeY * normY + planeZ * normZ; return this.dropShadow( [normX, normY, normZ, -a], [lightX, lightY, lightZ, 0] ); }; /** * Constructor of Vector3 * If opt_src is specified, new vector is initialized by opt_src. * @param opt_src source vector(option) */ var Vector3 = function (opt_src) { var v = new Float32Array(3); if (opt_src && typeof opt_src === "object") { v[0] = opt_src[0]; v[1] = opt_src[1]; v[2] = opt_src[2]; } this.elements = v; }; /** * Normalize. * @return this */ Vector3.prototype.normalize = function () { var v = this.elements; var c = v[0], d = v[1], e = v[2], g = Math.sqrt(c * c + d * d + e * e); if (g) { if (g == 1) return this; } else { v[0] = 0; v[1] = 0; v[2] = 0; return this; } g = 1 / g; v[0] = c * g; v[1] = d * g; v[2] = e * g; return this; }; /** * Constructor of Vector4 * If opt_src is specified, new vector is initialized by opt_src. * @param opt_src source vector(option) */ var Vector4 = function (opt_src) { var v = new Float32Array(4); if (opt_src && typeof opt_src === "object") { v[0] = opt_src[0]; v[1] = opt_src[1]; v[2] = opt_src[2]; v[3] = opt_src[3]; } this.elements = v; }; export default Matrix4;