管道基础大数据平台系统开发-【前端】-新系統界面
编辑 | blame | 历史 | 原始文档
var P = {version: "1.0.0"}
P.PlotUtils = {}, P.PlotUtils.distance = function(t, o) {
	return Math.sqrt(Math.pow(t[0] - o[0], 2) + Math.pow(t[1] - o[1], 2))
}, P.PlotUtils.wholeDistance = function(t) {
	for (var o = 0, e = 0; e < t.length - 1; e++) o += P.PlotUtils.distance(t[e], t[e + 1]);
	return o
}, P.PlotUtils.getBaseLength = function(t) {
	return Math.pow(P.PlotUtils.wholeDistance(t), .99)
}, P.PlotUtils.mid = function(t, o) {
	return [(t[0] + o[0]) / 2, (t[1] + o[1]) / 2]
}, P.PlotUtils.getCircleCenterOfThreePoints = function(t, o, e) {
	var r = [(t[0] + o[0]) / 2, (t[1] + o[1]) / 2],
		n = [r[0] - t[1] + o[1], r[1] + t[0] - o[0]],
		g = [(t[0] + e[0]) / 2, (t[1] + e[1]) / 2],
		i = [g[0] - t[1] + e[1], g[1] + t[0] - e[0]];
	return P.PlotUtils.getIntersectPoint(r, n, g, i)
}, P.PlotUtils.getIntersectPoint = function(t, o, e, r) {
	if (t[1] == o[1]) {
		var n = (r[0] - e[0]) / (r[1] - e[1]),
			g = n * (t[1] - e[1]) + e[0],
			i = t[1];
		return [g, i]
	}
	if (e[1] == r[1]) {
		var s = (o[0] - t[0]) / (o[1] - t[1]);
		return g = s * (e[1] - t[1]) + t[0], i = e[1], [g, i]
	}
	return s = (o[0] - t[0]) / (o[1] - t[1]), n = (r[0] - e[0]) / (r[1] - e[1]), i = (s * t[1] - t[0] - n * e[1] + e[0]) / (s - n), g = s * i - s * t[1] + t[0], [g, i]
}, P.PlotUtils.getAzimuth = function(t, o) {
	var e, r = Math.asin(Math.abs(o[1] - t[1]) / P.PlotUtils.distance(t, o));
	return o[1] >= t[1] && o[0] >= t[0] ? e = r + Math.PI : o[1] >= t[1] && o[0] < t[0] ? e = P.Constants.TWO_PI - r : o[1] < t[1] && o[0] < t[0] ? e = r : o[1] < t[1] && o[0] >= t[0] && (e = Math.PI - r), e
}, P.PlotUtils.getAngleOfThreePoints = function(t, o, e) {
	var r = P.PlotUtils.getAzimuth(o, t) - P.PlotUtils.getAzimuth(o, e);
	return 0 > r ? r + P.Constants.TWO_PI : r
}, P.PlotUtils.isClockWise = function(t, o, e) {
	return (e[1] - t[1]) * (o[0] - t[0]) > (o[1] - t[1]) * (e[0] - t[0])
}, P.PlotUtils.getPointOnLine = function(t, o, e) {
	var r = o[0] + t * (e[0] - o[0]),
		n = o[1] + t * (e[1] - o[1]);
	return [r, n]
}, P.PlotUtils.getCubicValue = function(t, o, e, r, n) {
	t = Math.max(Math.min(t, 1), 0);
	var g = 1 - t,
		i = t * t,
		s = i * t,
		a = g * g,
		l = a * g,
		u = l * o[0] + 3 * a * t * e[0] + 3 * g * i * r[0] + s * n[0],
		c = l * o[1] + 3 * a * t * e[1] + 3 * g * i * r[1] + s * n[1];
	return [u, c]
}, P.PlotUtils.getThirdPoint = function(t, o, e, r, n) {
	var g = P.PlotUtils.getAzimuth(t, o),
		i = n ? g + e : g - e,
		s = r * Math.cos(i),
		a = r * Math.sin(i);
	return [o[0] + s, o[1] + a]
}, P.PlotUtils.getArcPoints = function(t, o, e, r) {
	var n, g, i = [],
		s = r - e;
	s = 0 > s ? s + P.Constants.TWO_PI : s;
	for (var a = 0; a <= P.Constants.FITTING_COUNT; a++) {
		var l = e + s * a / P.Constants.FITTING_COUNT;
		n = t[0] + o * Math.cos(l), g = t[1] + o * Math.sin(l), i.push([n, g])
	}
	return i
}, P.PlotUtils.getBisectorNormals = function(t, o, e, r) {
	var n = P.PlotUtils.getNormal(o, e, r),
		g = Math.sqrt(n[0] * n[0] + n[1] * n[1]),
		i = n[0] / g,
		s = n[1] / g,
		a = P.PlotUtils.distance(o, e),
		l = P.PlotUtils.distance(e, r);
	if (g > P.Constants.ZERO_TOLERANCE) if (P.PlotUtils.isClockWise(o, e, r)) {
		var u = t * a,
			c = e[0] - u * s,
			p = e[1] + u * i,
			h = [c, p];
		u = t * l, c = e[0] + u * s, p = e[1] - u * i;
		var d = [c, p]
	} else u = t * a, c = e[0] + u * s, p = e[1] - u * i, h = [c, p], u = t * l, c = e[0] - u * s, p = e[1] + u * i, d = [c, p];
	else c = e[0] + t * (o[0] - e[0]), p = e[1] + t * (o[1] - e[1]), h = [c, p], c = e[0] + t * (r[0] - e[0]), p = e[1] + t * (r[1] - e[1]), d = [c, p];
	return [h, d]
}, P.PlotUtils.getNormal = function(t, o, e) {
	var r = t[0] - o[0],
		n = t[1] - o[1],
		g = Math.sqrt(r * r + n * n);
	r /= g, n /= g;
	var i = e[0] - o[0],
		s = e[1] - o[1],
		a = Math.sqrt(i * i + s * s);
	i /= a, s /= a;
	var l = r + i,
		u = n + s;
	return [l, u]
}, P.PlotUtils.getCurvePoints = function(t, o) {
	for (var e = P.PlotUtils.getLeftMostControlPoint(o), r = [e], n = 0; n < o.length - 2; n++) {
		var g = o[n],
			i = o[n + 1],
			s = o[n + 2],
			a = P.PlotUtils.getBisectorNormals(t, g, i, s);
		r = r.concat(a)
	}
	var l = P.PlotUtils.getRightMostControlPoint(o);
	r.push(l);
	var u = [];
	for (n = 0; n < o.length - 1; n++) {
		g = o[n], i = o[n + 1], u.push(g);
		for (var t = 0; t < P.Constants.FITTING_COUNT; t++) {
			var c = P.PlotUtils.getCubicValue(t / P.Constants.FITTING_COUNT, g, r[2 * n], r[2 * n + 1], i);
			u.push(c)
		}
		u.push(i)
	}
	return u
}, P.PlotUtils.getLeftMostControlPoint = function(o) {
	var e = o[0],
		r = o[1],
		n = o[2],
		g = P.PlotUtils.getBisectorNormals(0, e, r, n),
		i = g[0],
		s = P.PlotUtils.getNormal(e, r, n),
		a = Math.sqrt(s[0] * s[0] + s[1] * s[1]);
	if (a > P.Constants.ZERO_TOLERANCE) var l = P.PlotUtils.mid(e, r),
		u = e[0] - l[0],
		c = e[1] - l[1],
		p = P.PlotUtils.distance(e, r),
		h = 2 / p,
		d = -h * c,
		f = h * u,
		E = d * d - f * f,
		v = 2 * d * f,
		A = f * f - d * d,
		_ = i[0] - l[0],
		y = i[1] - l[1],
		m = l[0] + E * _ + v * y,
		O = l[1] + v * _ + A * y;
	else m = e[0] + t * (r[0] - e[0]), O = e[1] + t * (r[1] - e[1]);
	return [m, O]
}, P.PlotUtils.getRightMostControlPoint = function(o) {
	var e = o.length,
		r = o[e - 3],
		n = o[e - 2],
		g = o[e - 1],
		i = P.PlotUtils.getBisectorNormals(0, r, n, g),
		s = i[1],
		a = P.PlotUtils.getNormal(r, n, g),
		l = Math.sqrt(a[0] * a[0] + a[1] * a[1]);
	if (l > P.Constants.ZERO_TOLERANCE) var u = P.PlotUtils.mid(n, g),
		c = g[0] - u[0],
		p = g[1] - u[1],
		h = P.PlotUtils.distance(n, g),
		d = 2 / h,
		f = -d * p,
		E = d * c,
		v = f * f - E * E,
		A = 2 * f * E,
		_ = E * E - f * f,
		y = s[0] - u[0],
		m = s[1] - u[1],
		O = u[0] + v * y + A * m,
		T = u[1] + A * y + _ * m;
	else O = g[0] + t * (n[0] - g[0]), T = g[1] + t * (n[1] - g[1]);
	return [O, T]
}, P.PlotUtils.getBezierPoints = function(t) {
	if (t.length <= 2) return t;
	for (var o = [], e = t.length - 1, r = 0; 1 >= r; r += .01) {
		for (var n = y = 0, g = 0; e >= g; g++) {
			var i = P.PlotUtils.getBinomialFactor(e, g),
				s = Math.pow(r, g),
				a = Math.pow(1 - r, e - g);
			n += i * s * a * t[g][0], y += i * s * a * t[g][1]
		}
		o.push([n, y])
	}
	return o.push(t[e]), o
}, P.PlotUtils.getBinomialFactor = function(t, o) {
	return P.PlotUtils.getFactorial(t) / (P.PlotUtils.getFactorial(o) * P.PlotUtils.getFactorial(t - o))
}, P.PlotUtils.getFactorial = function(t) {
	if (1 >= t) return 1;
	if (2 == t) return 2;
	if (3 == t) return 6;
	if (4 == t) return 24;
	if (5 == t) return 120;
	for (var o = 1, e = 1; t >= e; e++) o *= e;
	return o
}, P.PlotUtils.getQBSplinePoints = function(t) {
	if (t.length <= 2) return t;
	var o = 2,
		e = [],
		r = t.length - o - 1;
	e.push(t[0]);
	for (var n = 0; r >= n; n++) for (var g = 0; 1 >= g; g += .05) {
		for (var i = y = 0, s = 0; o >= s; s++) {
			var a = P.PlotUtils.getQuadricBSplineFactor(s, g);
			i += a * t[n + s][0], y += a * t[n + s][1]
		}
		e.push([i, y])
	}
	return e.push(t[t.length - 1]), e
}, P.PlotUtils.getQuadricBSplineFactor = function(t, o) {
	return 0 == t ? Math.pow(o - 1, 2) / 2 : 1 == t ? (-2 * Math.pow(o, 2) + 2 * o + 1) / 2 : 2 == t ? Math.pow(o, 2) / 2 : 0
},P.Constants = {
	TWO_PI: 2 * Math.PI,
	HALF_PI: Math.PI / 2,
	FITTING_COUNT: 100,
	ZERO_TOLERANCE: 1e-4
}