/*
|
* Licensed to the Apache Software Foundation (ASF) under one
|
* or more contributor license agreements. See the NOTICE file
|
* distributed with this work for additional information
|
* regarding copyright ownership. The ASF licenses this file
|
* to you under the Apache License, Version 2.0 (the
|
* "License"); you may not use this file except in compliance
|
* with the License. You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing,
|
* software distributed under the License is distributed on an
|
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
* KIND, either express or implied. See the License for the
|
* specific language governing permissions and limitations
|
* under the License.
|
*/
|
|
/*
|
* A third-party license is embeded for some of the code in this file:
|
* The method "quantile" was copied from "d3.js".
|
* (See more details in the comment of the method below.)
|
* The use of the source code of this file is also subject to the terms
|
* and consitions of the license of "d3.js" (BSD-3Clause, see
|
* </licenses/LICENSE-d3>).
|
*/
|
|
import * as zrUtil from 'zrender/src/core/util';
|
|
const RADIAN_EPSILON = 1e-4;
|
|
function _trim(str: string): string {
|
return str.replace(/^\s+|\s+$/g, '');
|
}
|
|
/**
|
* Linear mapping a value from domain to range
|
* @param val
|
* @param domain Domain extent domain[0] can be bigger than domain[1]
|
* @param range Range extent range[0] can be bigger than range[1]
|
* @param clamp Default to be false
|
*/
|
export function linearMap(
|
val: number,
|
domain: number[],
|
range: number[],
|
clamp?: boolean
|
): number {
|
const subDomain = domain[1] - domain[0];
|
const subRange = range[1] - range[0];
|
|
if (subDomain === 0) {
|
return subRange === 0
|
? range[0]
|
: (range[0] + range[1]) / 2;
|
}
|
|
// Avoid accuracy problem in edge, such as
|
// 146.39 - 62.83 === 83.55999999999999.
|
// See echarts/test/ut/spec/util/number.js#linearMap#accuracyError
|
// It is a little verbose for efficiency considering this method
|
// is a hotspot.
|
if (clamp) {
|
if (subDomain > 0) {
|
if (val <= domain[0]) {
|
return range[0];
|
}
|
else if (val >= domain[1]) {
|
return range[1];
|
}
|
}
|
else {
|
if (val >= domain[0]) {
|
return range[0];
|
}
|
else if (val <= domain[1]) {
|
return range[1];
|
}
|
}
|
}
|
else {
|
if (val === domain[0]) {
|
return range[0];
|
}
|
if (val === domain[1]) {
|
return range[1];
|
}
|
}
|
|
return (val - domain[0]) / subDomain * subRange + range[0];
|
}
|
|
/**
|
* Convert a percent string to absolute number.
|
* Returns NaN if percent is not a valid string or number
|
*/
|
export function parsePercent(percent: number | string, all: number): number {
|
switch (percent) {
|
case 'center':
|
case 'middle':
|
percent = '50%';
|
break;
|
case 'left':
|
case 'top':
|
percent = '0%';
|
break;
|
case 'right':
|
case 'bottom':
|
percent = '100%';
|
break;
|
}
|
if (typeof percent === 'string') {
|
if (_trim(percent).match(/%$/)) {
|
return parseFloat(percent) / 100 * all;
|
}
|
|
return parseFloat(percent);
|
}
|
|
return percent == null ? NaN : +percent;
|
}
|
|
/**
|
* (1) Fix rounding error of float numbers.
|
* (2) Support return string to avoid scientific notation like '3.5e-7'.
|
*/
|
export function round(x: number | string, precision?: number): number;
|
export function round(x: number | string, precision: number, returnStr: false): number;
|
export function round(x: number | string, precision: number, returnStr: true): string;
|
export function round(x: number | string, precision?: number, returnStr?: boolean): string | number {
|
if (precision == null) {
|
precision = 10;
|
}
|
// Avoid range error
|
precision = Math.min(Math.max(0, precision), 20);
|
x = (+x).toFixed(precision);
|
return (returnStr ? x : +x);
|
}
|
|
/**
|
* Inplacd asc sort arr.
|
* The input arr will be modified.
|
*/
|
export function asc<T extends number[]>(arr: T): T {
|
arr.sort(function (a, b) {
|
return a - b;
|
});
|
return arr;
|
}
|
|
/**
|
* Get precision
|
*/
|
export function getPrecision(val: string | number): number {
|
val = +val;
|
if (isNaN(val)) {
|
return 0;
|
}
|
// It is much faster than methods converting number to string as follows
|
// let tmp = val.toString();
|
// return tmp.length - 1 - tmp.indexOf('.');
|
// especially when precision is low
|
let e = 1;
|
let count = 0;
|
while (Math.round(val * e) / e !== val) {
|
e *= 10;
|
count++;
|
}
|
return count;
|
}
|
|
/**
|
* Get precision with slow but safe method
|
*/
|
export function getPrecisionSafe(val: string | number): number {
|
const str = val.toString();
|
|
// Consider scientific notation: '3.4e-12' '3.4e+12'
|
const eIndex = str.indexOf('e');
|
if (eIndex > 0) {
|
const precision = +str.slice(eIndex + 1);
|
return precision < 0 ? -precision : 0;
|
}
|
else {
|
const dotIndex = str.indexOf('.');
|
return dotIndex < 0 ? 0 : str.length - 1 - dotIndex;
|
}
|
}
|
|
/**
|
* Minimal dicernible data precisioin according to a single pixel.
|
*/
|
export function getPixelPrecision(dataExtent: [number, number], pixelExtent: [number, number]): number {
|
const log = Math.log;
|
const LN10 = Math.LN10;
|
const dataQuantity = Math.floor(log(dataExtent[1] - dataExtent[0]) / LN10);
|
const sizeQuantity = Math.round(log(Math.abs(pixelExtent[1] - pixelExtent[0])) / LN10);
|
// toFixed() digits argument must be between 0 and 20.
|
const precision = Math.min(Math.max(-dataQuantity + sizeQuantity, 0), 20);
|
return !isFinite(precision) ? 20 : precision;
|
}
|
|
/**
|
* Get a data of given precision, assuring the sum of percentages
|
* in valueList is 1.
|
* The largest remainer method is used.
|
* https://en.wikipedia.org/wiki/Largest_remainder_method
|
*
|
* @param valueList a list of all data
|
* @param idx index of the data to be processed in valueList
|
* @param precision integer number showing digits of precision
|
* @return percent ranging from 0 to 100
|
*/
|
export function getPercentWithPrecision(valueList: number[], idx: number, precision: number): number {
|
if (!valueList[idx]) {
|
return 0;
|
}
|
|
const sum = zrUtil.reduce(valueList, function (acc, val) {
|
return acc + (isNaN(val) ? 0 : val);
|
}, 0);
|
if (sum === 0) {
|
return 0;
|
}
|
|
const digits = Math.pow(10, precision);
|
const votesPerQuota = zrUtil.map(valueList, function (val) {
|
return (isNaN(val) ? 0 : val) / sum * digits * 100;
|
});
|
const targetSeats = digits * 100;
|
|
const seats = zrUtil.map(votesPerQuota, function (votes) {
|
// Assign automatic seats.
|
return Math.floor(votes);
|
});
|
let currentSum = zrUtil.reduce(seats, function (acc, val) {
|
return acc + val;
|
}, 0);
|
|
const remainder = zrUtil.map(votesPerQuota, function (votes, idx) {
|
return votes - seats[idx];
|
});
|
|
// Has remainding votes.
|
while (currentSum < targetSeats) {
|
// Find next largest remainder.
|
let max = Number.NEGATIVE_INFINITY;
|
let maxId = null;
|
for (let i = 0, len = remainder.length; i < len; ++i) {
|
if (remainder[i] > max) {
|
max = remainder[i];
|
maxId = i;
|
}
|
}
|
|
// Add a vote to max remainder.
|
++seats[maxId];
|
remainder[maxId] = 0;
|
++currentSum;
|
}
|
|
return seats[idx] / digits;
|
}
|
|
// Number.MAX_SAFE_INTEGER, ie do not support.
|
export const MAX_SAFE_INTEGER = 9007199254740991;
|
|
/**
|
* To 0 - 2 * PI, considering negative radian.
|
*/
|
export function remRadian(radian: number): number {
|
const pi2 = Math.PI * 2;
|
return (radian % pi2 + pi2) % pi2;
|
}
|
|
/**
|
* @param {type} radian
|
* @return {boolean}
|
*/
|
export function isRadianAroundZero(val: number): boolean {
|
return val > -RADIAN_EPSILON && val < RADIAN_EPSILON;
|
}
|
|
// eslint-disable-next-line
|
const TIME_REG = /^(?:(\d{4})(?:[-\/](\d{1,2})(?:[-\/](\d{1,2})(?:[T ](\d{1,2})(?::(\d{1,2})(?::(\d{1,2})(?:[.,](\d+))?)?)?(Z|[\+\-]\d\d:?\d\d)?)?)?)?)?$/; // jshint ignore:line
|
|
/**
|
* @param value valid type: number | string | Date, otherwise return `new Date(NaN)`
|
* These values can be accepted:
|
* + An instance of Date, represent a time in its own time zone.
|
* + Or string in a subset of ISO 8601, only including:
|
* + only year, month, date: '2012-03', '2012-03-01', '2012-03-01 05', '2012-03-01 05:06',
|
* + separated with T or space: '2012-03-01T12:22:33.123', '2012-03-01 12:22:33.123',
|
* + time zone: '2012-03-01T12:22:33Z', '2012-03-01T12:22:33+8000', '2012-03-01T12:22:33-05:00',
|
* all of which will be treated as local time if time zone is not specified
|
* (see <https://momentjs.com/>).
|
* + Or other string format, including (all of which will be treated as loacal time):
|
* '2012', '2012-3-1', '2012/3/1', '2012/03/01',
|
* '2009/6/12 2:00', '2009/6/12 2:05:08', '2009/6/12 2:05:08.123'
|
* + a timestamp, which represent a time in UTC.
|
* @return date Never be null/undefined. If invalid, return `new Date(NaN)`.
|
*/
|
export function parseDate(value: unknown): Date {
|
if (value instanceof Date) {
|
return value;
|
}
|
else if (typeof value === 'string') {
|
// Different browsers parse date in different way, so we parse it manually.
|
// Some other issues:
|
// new Date('1970-01-01') is UTC,
|
// new Date('1970/01/01') and new Date('1970-1-01') is local.
|
// See issue #3623
|
const match = TIME_REG.exec(value);
|
|
if (!match) {
|
// return Invalid Date.
|
return new Date(NaN);
|
}
|
|
// Use local time when no timezone offset specifed.
|
if (!match[8]) {
|
// match[n] can only be string or undefined.
|
// But take care of '12' + 1 => '121'.
|
return new Date(
|
+match[1],
|
+(match[2] || 1) - 1,
|
+match[3] || 1,
|
+match[4] || 0,
|
+(match[5] || 0),
|
+match[6] || 0,
|
+match[7] || 0
|
);
|
}
|
// Timezoneoffset of Javascript Date has considered DST (Daylight Saving Time,
|
// https://tc39.github.io/ecma262/#sec-daylight-saving-time-adjustment).
|
// For example, system timezone is set as "Time Zone: America/Toronto",
|
// then these code will get different result:
|
// `new Date(1478411999999).getTimezoneOffset(); // get 240`
|
// `new Date(1478412000000).getTimezoneOffset(); // get 300`
|
// So we should not use `new Date`, but use `Date.UTC`.
|
else {
|
let hour = +match[4] || 0;
|
if (match[8].toUpperCase() !== 'Z') {
|
hour -= +match[8].slice(0, 3);
|
}
|
return new Date(Date.UTC(
|
+match[1],
|
+(match[2] || 1) - 1,
|
+match[3] || 1,
|
hour,
|
+(match[5] || 0),
|
+match[6] || 0,
|
+match[7] || 0
|
));
|
}
|
}
|
else if (value == null) {
|
return new Date(NaN);
|
}
|
|
return new Date(Math.round(value as number));
|
}
|
|
/**
|
* Quantity of a number. e.g. 0.1, 1, 10, 100
|
*
|
* @param val
|
* @return
|
*/
|
export function quantity(val: number): number {
|
return Math.pow(10, quantityExponent(val));
|
}
|
|
/**
|
* Exponent of the quantity of a number
|
* e.g., 1234 equals to 1.234*10^3, so quantityExponent(1234) is 3
|
*
|
* @param val non-negative value
|
* @return
|
*/
|
export function quantityExponent(val: number): number {
|
if (val === 0) {
|
return 0;
|
}
|
|
let exp = Math.floor(Math.log(val) / Math.LN10);
|
/**
|
* exp is expected to be the rounded-down result of the base-10 log of val.
|
* But due to the precision loss with Math.log(val), we need to restore it
|
* using 10^exp to make sure we can get val back from exp. #11249
|
*/
|
if (val / Math.pow(10, exp) >= 10) {
|
exp++;
|
}
|
return exp;
|
}
|
|
/**
|
* find a “nice” number approximately equal to x. Round the number if round = true,
|
* take ceiling if round = false. The primary observation is that the “nicest”
|
* numbers in decimal are 1, 2, and 5, and all power-of-ten multiples of these numbers.
|
*
|
* See "Nice Numbers for Graph Labels" of Graphic Gems.
|
*
|
* @param val Non-negative value.
|
* @param round
|
* @return Niced number
|
*/
|
export function nice(val: number, round?: boolean): number {
|
const exponent = quantityExponent(val);
|
const exp10 = Math.pow(10, exponent);
|
const f = val / exp10; // 1 <= f < 10
|
let nf;
|
if (round) {
|
if (f < 1.5) {
|
nf = 1;
|
}
|
else if (f < 2.5) {
|
nf = 2;
|
}
|
else if (f < 4) {
|
nf = 3;
|
}
|
else if (f < 7) {
|
nf = 5;
|
}
|
else {
|
nf = 10;
|
}
|
}
|
else {
|
if (f < 1) {
|
nf = 1;
|
}
|
else if (f < 2) {
|
nf = 2;
|
}
|
else if (f < 3) {
|
nf = 3;
|
}
|
else if (f < 5) {
|
nf = 5;
|
}
|
else {
|
nf = 10;
|
}
|
}
|
val = nf * exp10;
|
|
// Fix 3 * 0.1 === 0.30000000000000004 issue (see IEEE 754).
|
// 20 is the uppper bound of toFixed.
|
return exponent >= -20 ? +val.toFixed(exponent < 0 ? -exponent : 0) : val;
|
}
|
|
/**
|
* This code was copied from "d3.js"
|
* <https://github.com/d3/d3/blob/9cc9a875e636a1dcf36cc1e07bdf77e1ad6e2c74/src/arrays/quantile.js>.
|
* See the license statement at the head of this file.
|
* @param ascArr
|
*/
|
export function quantile(ascArr: number[], p: number): number {
|
const H = (ascArr.length - 1) * p + 1;
|
const h = Math.floor(H);
|
const v = +ascArr[h - 1];
|
const e = H - h;
|
return e ? v + e * (ascArr[h] - v) : v;
|
}
|
|
type IntervalItem = {
|
interval: [number, number]
|
close: [0 | 1, 0 | 1]
|
};
|
/**
|
* Order intervals asc, and split them when overlap.
|
* expect(numberUtil.reformIntervals([
|
* {interval: [18, 62], close: [1, 1]},
|
* {interval: [-Infinity, -70], close: [0, 0]},
|
* {interval: [-70, -26], close: [1, 1]},
|
* {interval: [-26, 18], close: [1, 1]},
|
* {interval: [62, 150], close: [1, 1]},
|
* {interval: [106, 150], close: [1, 1]},
|
* {interval: [150, Infinity], close: [0, 0]}
|
* ])).toEqual([
|
* {interval: [-Infinity, -70], close: [0, 0]},
|
* {interval: [-70, -26], close: [1, 1]},
|
* {interval: [-26, 18], close: [0, 1]},
|
* {interval: [18, 62], close: [0, 1]},
|
* {interval: [62, 150], close: [0, 1]},
|
* {interval: [150, Infinity], close: [0, 0]}
|
* ]);
|
* @param list, where `close` mean open or close
|
* of the interval, and Infinity can be used.
|
* @return The origin list, which has been reformed.
|
*/
|
export function reformIntervals(list: IntervalItem[]): IntervalItem[] {
|
list.sort(function (a, b) {
|
return littleThan(a, b, 0) ? -1 : 1;
|
});
|
|
let curr = -Infinity;
|
let currClose = 1;
|
for (let i = 0; i < list.length;) {
|
const interval = list[i].interval;
|
const close = list[i].close;
|
|
for (let lg = 0; lg < 2; lg++) {
|
if (interval[lg] <= curr) {
|
interval[lg] = curr;
|
close[lg] = (!lg ? 1 - currClose : 1) as 0 | 1;
|
}
|
curr = interval[lg];
|
currClose = close[lg];
|
}
|
|
if (interval[0] === interval[1] && close[0] * close[1] !== 1) {
|
list.splice(i, 1);
|
}
|
else {
|
i++;
|
}
|
}
|
|
return list;
|
|
function littleThan(a: IntervalItem, b: IntervalItem, lg: number): boolean {
|
return a.interval[lg] < b.interval[lg]
|
|| (
|
a.interval[lg] === b.interval[lg]
|
&& (
|
(a.close[lg] - b.close[lg] === (!lg ? 1 : -1))
|
|| (!lg && littleThan(a, b, 1))
|
)
|
);
|
}
|
}
|
|
/**
|
* [Numberic is defined as]:
|
* `parseFloat(val) == val`
|
* For example:
|
* numeric:
|
* typeof number except NaN, '-123', '123', '2e3', '-2e3', '011', 'Infinity', Infinity,
|
* and they rounded by white-spaces or line-terminal like ' -123 \n ' (see es spec)
|
* not-numeric:
|
* null, undefined, [], {}, true, false, 'NaN', NaN, '123ab',
|
* empty string, string with only white-spaces or line-terminal (see es spec),
|
* 0x12, '0x12', '-0x12', 012, '012', '-012',
|
* non-string, ...
|
*
|
* @test See full test cases in `test/ut/spec/util/number.js`.
|
* @return Must be a typeof number. If not numeric, return NaN.
|
*/
|
export function numericToNumber(val: unknown): number {
|
const valFloat = parseFloat(val as string);
|
return (
|
valFloat == val // eslint-disable-line eqeqeq
|
&& (valFloat !== 0 || typeof val !== 'string' || val.indexOf('x') <= 0) // For case ' 0x0 '.
|
) ? valFloat : NaN;
|
}
|
|
/**
|
* Definition of "numeric": see `numericToNumber`.
|
*/
|
export function isNumeric(val: unknown): val is number {
|
return !isNaN(numericToNumber(val));
|
}
|
|
/**
|
* Use random base to prevent users hard code depending on
|
* this auto generated marker id.
|
* @return An positive integer.
|
*/
|
export function getRandomIdBase(): number {
|
return Math.round(Math.random() * 9);
|
}
|
|
/**
|
* Get the greatest common dividor
|
*
|
* @param {number} a one number
|
* @param {number} b the other number
|
*/
|
export function getGreatestCommonDividor(a: number, b: number): number {
|
if (b === 0) {
|
return a;
|
}
|
return getGreatestCommonDividor(b, a % b);
|
}
|
|
/**
|
* Get the least common multiple
|
*
|
* @param {number} a one number
|
* @param {number} b the other number
|
*/
|
export function getLeastCommonMultiple(a: number, b: number) {
|
if (a == null) {
|
return b;
|
}
|
if (b == null) {
|
return a;
|
}
|
return a * b / getGreatestCommonDividor(a, b);
|
}
|