/*
|
* Licensed to the Apache Software Foundation (ASF) under one
|
* or more contributor license agreements. See the NOTICE file
|
* distributed with this work for additional information
|
* regarding copyright ownership. The ASF licenses this file
|
* to you under the Apache License, Version 2.0 (the
|
* "License"); you may not use this file except in compliance
|
* with the License. You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing,
|
* software distributed under the License is distributed on an
|
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
* KIND, either express or implied. See the License for the
|
* specific language governing permissions and limitations
|
* under the License.
|
*/
|
|
import { assert, isArray, eqNaN, isFunction } from 'zrender/src/core/util';
|
import Scale from '../scale/Scale';
|
import { AxisBaseModel } from './AxisBaseModel';
|
import { parsePercent } from 'zrender/src/contain/text';
|
import { AxisBaseOption } from './axisCommonTypes';
|
import { ScaleDataValue } from '../util/types';
|
|
|
export interface ScaleRawExtentResult {
|
// `min`/`max` defines data available range, determined by
|
// `dataMin`/`dataMax` and explicit specified min max related option.
|
// The final extent will be based on the `min`/`max` and may be enlarge
|
// a little (say, "nice strategy", e.g., niceScale, boundaryGap).
|
// Ensure `min`/`max` be finite number or NaN here.
|
// (not to be null/undefined) `NaN` means min/max axis is blank.
|
readonly min: number;
|
readonly max: number;
|
// `minFixed`/`maxFixed` marks that `min`/`max` should be used
|
// in the final extent without other "nice strategy".
|
readonly minFixed: boolean;
|
readonly maxFixed: boolean;
|
// Mark that the axis should be blank.
|
readonly isBlank: boolean;
|
}
|
|
export class ScaleRawExtentInfo {
|
|
private _needCrossZero: boolean;
|
private _isOrdinal: boolean;
|
private _axisDataLen: number;
|
private _boundaryGapInner: number[];
|
|
// Accurate raw value get from model.
|
private _modelMinRaw: AxisBaseOption['min'];
|
private _modelMaxRaw: AxisBaseOption['max'];
|
|
// Can be `finite number`/`null`/`undefined`/`NaN`
|
private _modelMinNum: number;
|
private _modelMaxNum: number;
|
|
// Range union by series data on this axis.
|
// May be modified if data is filtered.
|
private _dataMin: number;
|
private _dataMax: number;
|
|
// Highest priority if specified.
|
private _determinedMin: number;
|
private _determinedMax: number;
|
|
// Make that the `rawExtentInfo` can not be modified any more.
|
readonly frozen: boolean;
|
|
|
constructor(
|
scale: Scale,
|
model: AxisBaseModel,
|
// Usually: data extent from all series on this axis.
|
originalExtent: number[]
|
) {
|
this._prepareParams(scale, model, originalExtent);
|
}
|
|
/**
|
* Parameters depending on ouside (like model, user callback)
|
* are prepared and fixed here.
|
*/
|
private _prepareParams(
|
scale: Scale,
|
model: AxisBaseModel,
|
// Usually: data extent from all series on this axis.
|
dataExtent: number[]
|
) {
|
if (dataExtent[1] < dataExtent[0]) {
|
dataExtent = [NaN, NaN];
|
}
|
this._dataMin = dataExtent[0];
|
this._dataMax = dataExtent[1];
|
|
const isOrdinal = this._isOrdinal = scale.type === 'ordinal';
|
this._needCrossZero = model.getNeedCrossZero && model.getNeedCrossZero();
|
|
const modelMinRaw = this._modelMinRaw = model.get('min', true);
|
if (isFunction(modelMinRaw)) {
|
// This callback alway provide users the full data extent (before data filtered).
|
this._modelMinNum = parseAxisModelMinMax(scale, modelMinRaw({
|
min: dataExtent[0],
|
max: dataExtent[1]
|
}));
|
}
|
else if (modelMinRaw !== 'dataMin') {
|
this._modelMinNum = parseAxisModelMinMax(scale, modelMinRaw);
|
}
|
|
const modelMaxRaw = this._modelMaxRaw = model.get('max', true);
|
if (isFunction(modelMaxRaw)) {
|
// This callback alway provide users the full data extent (before data filtered).
|
this._modelMaxNum = parseAxisModelMinMax(scale, modelMaxRaw({
|
min: dataExtent[0],
|
max: dataExtent[1]
|
}));
|
}
|
else if (modelMaxRaw !== 'dataMax') {
|
this._modelMaxNum = parseAxisModelMinMax(scale, modelMaxRaw);
|
}
|
|
if (isOrdinal) {
|
// FIXME: there is a flaw here: if there is no "block" data processor like `dataZoom`,
|
// and progressive rendering is using, here the category result might just only contain
|
// the processed chunk rather than the entire result.
|
this._axisDataLen = model.getCategories().length;
|
}
|
else {
|
const boundaryGap = model.get('boundaryGap');
|
const boundaryGapArr = isArray(boundaryGap)
|
? boundaryGap : [boundaryGap || 0, boundaryGap || 0];
|
|
if (typeof boundaryGapArr[0] === 'boolean' || typeof boundaryGapArr[1] === 'boolean') {
|
if (__DEV__) {
|
console.warn('Boolean type for boundaryGap is only '
|
+ 'allowed for ordinal axis. Please use string in '
|
+ 'percentage instead, e.g., "20%". Currently, '
|
+ 'boundaryGap is set to be 0.');
|
}
|
this._boundaryGapInner = [0, 0];
|
}
|
else {
|
this._boundaryGapInner = [
|
parsePercent(boundaryGapArr[0], 1),
|
parsePercent(boundaryGapArr[1], 1)
|
];
|
}
|
}
|
}
|
|
/**
|
* Calculate extent by prepared parameters.
|
* This method has no external dependency and can be called duplicatedly,
|
* getting the same result.
|
* If parameters changed, should call this method to recalcuate.
|
*/
|
calculate(): ScaleRawExtentResult {
|
// Notice: When min/max is not set (that is, when there are null/undefined,
|
// which is the most common case), these cases should be ensured:
|
// (1) For 'ordinal', show all axis.data.
|
// (2) For others:
|
// + `boundaryGap` is applied (if min/max set, boundaryGap is
|
// disabled).
|
// + If `needCrossZero`, min/max should be zero, otherwise, min/max should
|
// be the result that originalExtent enlarged by boundaryGap.
|
// (3) If no data, it should be ensured that `scale.setBlank` is set.
|
|
const isOrdinal = this._isOrdinal;
|
const dataMin = this._dataMin;
|
const dataMax = this._dataMax;
|
const axisDataLen = this._axisDataLen;
|
const boundaryGapInner = this._boundaryGapInner;
|
|
const span = !isOrdinal
|
? ((dataMax - dataMin) || Math.abs(dataMin))
|
: null;
|
|
// Currently if a `'value'` axis model min is specified as 'dataMin'/'dataMax',
|
// `boundaryGap` will not be used. It's the different from specifying as `null`/`undefined`.
|
let min = this._modelMinRaw === 'dataMin' ? dataMin : this._modelMinNum;
|
let max = this._modelMaxRaw === 'dataMax' ? dataMax : this._modelMaxNum;
|
|
// If `_modelMinNum`/`_modelMaxNum` is `null`/`undefined`, should not be fixed.
|
let minFixed = min != null;
|
let maxFixed = max != null;
|
|
if (min == null) {
|
min = isOrdinal
|
? (axisDataLen ? 0 : NaN)
|
: dataMin - boundaryGapInner[0] * span;
|
}
|
if (max == null) {
|
max = isOrdinal
|
? (axisDataLen ? axisDataLen - 1 : NaN)
|
: dataMax + boundaryGapInner[1] * span;
|
}
|
|
(min == null || !isFinite(min)) && (min = NaN);
|
(max == null || !isFinite(max)) && (max = NaN);
|
|
if (min > max) {
|
min = NaN;
|
max = NaN;
|
}
|
|
const isBlank = eqNaN(min)
|
|| eqNaN(max)
|
|| (isOrdinal && !axisDataLen);
|
|
// If data extent modified, need to recalculated to ensure cross zero.
|
if (this._needCrossZero) {
|
// Axis is over zero and min is not set
|
if (min > 0 && max > 0 && !minFixed) {
|
min = 0;
|
// minFixed = true;
|
}
|
// Axis is under zero and max is not set
|
if (min < 0 && max < 0 && !maxFixed) {
|
max = 0;
|
// maxFixed = true;
|
}
|
// PENDING:
|
// When `needCrossZero` and all data is positive/negative, should it be ensured
|
// that the results processed by boundaryGap are positive/negative?
|
// If so, here `minFixed`/`maxFixed` need to be set.
|
}
|
|
const determinedMin = this._determinedMin;
|
const determinedMax = this._determinedMax;
|
if (determinedMin != null) {
|
min = determinedMin;
|
minFixed = true;
|
}
|
if (determinedMax != null) {
|
max = determinedMax;
|
maxFixed = true;
|
}
|
|
// Ensure min/max be finite number or NaN here. (not to be null/undefined)
|
// `NaN` means min/max axis is blank.
|
return {
|
min: min,
|
max: max,
|
minFixed: minFixed,
|
maxFixed: maxFixed,
|
isBlank: isBlank
|
};
|
}
|
|
modifyDataMinMax(minMaxName: 'min' | 'max', val: number): void {
|
if (__DEV__) {
|
assert(!this.frozen);
|
}
|
this[DATA_MIN_MAX_ATTR[minMaxName]] = val;
|
}
|
|
setDeterminedMinMax(minMaxName: 'min' | 'max', val: number): void {
|
const attr = DETERMINED_MIN_MAX_ATTR[minMaxName];
|
if (__DEV__) {
|
assert(
|
!this.frozen
|
// Earse them usually means logic flaw.
|
&& (this[attr] == null)
|
);
|
}
|
this[attr] = val;
|
}
|
|
freeze() {
|
// @ts-ignore
|
this.frozen = true;
|
}
|
}
|
|
const DETERMINED_MIN_MAX_ATTR = { min: '_determinedMin', max: '_determinedMax' } as const;
|
const DATA_MIN_MAX_ATTR = { min: '_dataMin', max: '_dataMax' } as const;
|
|
/**
|
* Get scale min max and related info only depends on model settings.
|
* This method can be called after coordinate system created.
|
* For example, in data processing stage.
|
*
|
* Scale extent info probably be required multiple times during a workflow.
|
* For example:
|
* (1) `dataZoom` depends it to get the axis extent in "100%" state.
|
* (2) `processor/extentCalculator` depends it to make sure whether axis extent is specified.
|
* (3) `coordSys.update` use it to finally decide the scale extent.
|
* But the callback of `min`/`max` should not be called multiple times.
|
* The code below should not be implemented repeatedly either.
|
* So we cache the result in the scale instance, which will be recreated at the begining
|
* of the workflow (because `scale` instance will be recreated each round of the workflow).
|
*/
|
export function ensureScaleRawExtentInfo(
|
scale: Scale,
|
model: AxisBaseModel,
|
// Usually: data extent from all series on this axis.
|
originalExtent: number[]
|
): ScaleRawExtentInfo {
|
|
// Do not permit to recreate.
|
let rawExtentInfo = scale.rawExtentInfo;
|
if (rawExtentInfo) {
|
return rawExtentInfo;
|
}
|
|
rawExtentInfo = new ScaleRawExtentInfo(scale, model, originalExtent);
|
// @ts-ignore
|
scale.rawExtentInfo = rawExtentInfo;
|
|
return rawExtentInfo;
|
}
|
|
export function parseAxisModelMinMax(scale: Scale, minMax: ScaleDataValue): number {
|
return minMax == null ? null
|
: eqNaN(minMax) ? NaN
|
: scale.parse(minMax);
|
}
|