// cuon-matrix.js (c) 2012 kanda and matsuda
|
/**
|
* This is a class treating 4x4 matrix.
|
* This class contains the function that is equivalent to OpenGL matrix stack.
|
* The matrix after conversion is calculated by multiplying a conversion matrix from the right.
|
* The matrix is replaced by the calculated result.
|
*/
|
|
/**
|
* Constructor of Matrix4
|
* If opt_src is specified, new matrix is initialized by opt_src.
|
* Otherwise, new matrix is initialized by identity matrix.
|
* @param opt_src source matrix(option)
|
*/
|
var Matrix4 = function (opt_src) {
|
var i, s, d;
|
if (
|
opt_src &&
|
typeof opt_src === "object" &&
|
opt_src.hasOwnProperty("elements")
|
) {
|
s = opt_src.elements;
|
d = new Float32Array(16);
|
for (i = 0; i < 16; ++i) {
|
d[i] = s[i];
|
}
|
this.elements = d;
|
} else {
|
this.elements = new Float32Array([
|
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
|
]);
|
}
|
};
|
|
/**
|
* Set the identity matrix.
|
* @return this
|
*/
|
Matrix4.prototype.setIdentity = function () {
|
var e = this.elements;
|
e[0] = 1;
|
e[4] = 0;
|
e[8] = 0;
|
e[12] = 0;
|
e[1] = 0;
|
e[5] = 1;
|
e[9] = 0;
|
e[13] = 0;
|
e[2] = 0;
|
e[6] = 0;
|
e[10] = 1;
|
e[14] = 0;
|
e[3] = 0;
|
e[7] = 0;
|
e[11] = 0;
|
e[15] = 1;
|
return this;
|
};
|
|
/**
|
* Copy matrix.
|
* @param src source matrix
|
* @return this
|
*/
|
Matrix4.prototype.set = function (src) {
|
var i, s, d;
|
|
s = src.elements;
|
d = this.elements;
|
|
if (s === d) {
|
return;
|
}
|
|
for (i = 0; i < 16; ++i) {
|
d[i] = s[i];
|
}
|
|
return this;
|
};
|
|
/**
|
* Multiply the matrix from the right.
|
* @param other The multiply matrix
|
* @return this
|
*/
|
Matrix4.prototype.concat = function (other) {
|
var i, e, a, b, ai0, ai1, ai2, ai3;
|
|
// Calculate e = a * b
|
e = this.elements;
|
a = this.elements;
|
b = other.elements;
|
|
// If e equals b, copy b to temporary matrix.
|
if (e === b) {
|
b = new Float32Array(16);
|
for (i = 0; i < 16; ++i) {
|
b[i] = e[i];
|
}
|
}
|
|
for (i = 0; i < 4; i++) {
|
ai0 = a[i];
|
ai1 = a[i + 4];
|
ai2 = a[i + 8];
|
ai3 = a[i + 12];
|
e[i] = ai0 * b[0] + ai1 * b[1] + ai2 * b[2] + ai3 * b[3];
|
e[i + 4] = ai0 * b[4] + ai1 * b[5] + ai2 * b[6] + ai3 * b[7];
|
e[i + 8] = ai0 * b[8] + ai1 * b[9] + ai2 * b[10] + ai3 * b[11];
|
e[i + 12] = ai0 * b[12] + ai1 * b[13] + ai2 * b[14] + ai3 * b[15];
|
}
|
|
return this;
|
};
|
Matrix4.prototype.multiply = Matrix4.prototype.concat;
|
|
/**
|
* Multiply the three-dimensional vector.
|
* @param pos The multiply vector
|
* @return The result of multiplication(Float32Array)
|
*/
|
Matrix4.prototype.multiplyVector3 = function (pos) {
|
var e = this.elements;
|
var p = pos.elements;
|
var v = new Vector3();
|
var result = v.elements;
|
|
result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[8] + e[11];
|
result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[9] + e[12];
|
result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + e[13];
|
|
return v;
|
};
|
|
/**
|
* Multiply the four-dimensional vector.
|
* @param pos The multiply vector
|
* @return The result of multiplication(Float32Array)
|
*/
|
Matrix4.prototype.multiplyVector4 = function (pos) {
|
var e = this.elements;
|
var p = pos.elements;
|
var v = new Vector4();
|
var result = v.elements;
|
|
result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[8] + p[3] * e[12];
|
result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[9] + p[3] * e[13];
|
result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + p[3] * e[14];
|
result[3] = p[0] * e[3] + p[1] * e[7] + p[2] * e[11] + p[3] * e[15];
|
|
return v;
|
};
|
|
/**
|
* Transpose the matrix.
|
* @return this
|
*/
|
Matrix4.prototype.transpose = function () {
|
var e, t;
|
|
e = this.elements;
|
|
t = e[1];
|
e[1] = e[4];
|
e[4] = t;
|
t = e[2];
|
e[2] = e[8];
|
e[8] = t;
|
t = e[3];
|
e[3] = e[12];
|
e[12] = t;
|
t = e[6];
|
e[6] = e[9];
|
e[9] = t;
|
t = e[7];
|
e[7] = e[13];
|
e[13] = t;
|
t = e[11];
|
e[11] = e[14];
|
e[14] = t;
|
|
return this;
|
};
|
|
/**
|
* Calculate the inverse matrix of specified matrix, and set to this.
|
* @param other The source matrix
|
* @return this
|
*/
|
Matrix4.prototype.setInverseOf = function (other) {
|
var i, s, d, inv, det;
|
|
s = other.elements;
|
d = this.elements;
|
inv = new Float32Array(16);
|
|
inv[0] =
|
s[5] * s[10] * s[15] -
|
s[5] * s[11] * s[14] -
|
s[9] * s[6] * s[15] +
|
s[9] * s[7] * s[14] +
|
s[13] * s[6] * s[11] -
|
s[13] * s[7] * s[10];
|
inv[4] =
|
-s[4] * s[10] * s[15] +
|
s[4] * s[11] * s[14] +
|
s[8] * s[6] * s[15] -
|
s[8] * s[7] * s[14] -
|
s[12] * s[6] * s[11] +
|
s[12] * s[7] * s[10];
|
inv[8] =
|
s[4] * s[9] * s[15] -
|
s[4] * s[11] * s[13] -
|
s[8] * s[5] * s[15] +
|
s[8] * s[7] * s[13] +
|
s[12] * s[5] * s[11] -
|
s[12] * s[7] * s[9];
|
inv[12] =
|
-s[4] * s[9] * s[14] +
|
s[4] * s[10] * s[13] +
|
s[8] * s[5] * s[14] -
|
s[8] * s[6] * s[13] -
|
s[12] * s[5] * s[10] +
|
s[12] * s[6] * s[9];
|
|
inv[1] =
|
-s[1] * s[10] * s[15] +
|
s[1] * s[11] * s[14] +
|
s[9] * s[2] * s[15] -
|
s[9] * s[3] * s[14] -
|
s[13] * s[2] * s[11] +
|
s[13] * s[3] * s[10];
|
inv[5] =
|
s[0] * s[10] * s[15] -
|
s[0] * s[11] * s[14] -
|
s[8] * s[2] * s[15] +
|
s[8] * s[3] * s[14] +
|
s[12] * s[2] * s[11] -
|
s[12] * s[3] * s[10];
|
inv[9] =
|
-s[0] * s[9] * s[15] +
|
s[0] * s[11] * s[13] +
|
s[8] * s[1] * s[15] -
|
s[8] * s[3] * s[13] -
|
s[12] * s[1] * s[11] +
|
s[12] * s[3] * s[9];
|
inv[13] =
|
s[0] * s[9] * s[14] -
|
s[0] * s[10] * s[13] -
|
s[8] * s[1] * s[14] +
|
s[8] * s[2] * s[13] +
|
s[12] * s[1] * s[10] -
|
s[12] * s[2] * s[9];
|
|
inv[2] =
|
s[1] * s[6] * s[15] -
|
s[1] * s[7] * s[14] -
|
s[5] * s[2] * s[15] +
|
s[5] * s[3] * s[14] +
|
s[13] * s[2] * s[7] -
|
s[13] * s[3] * s[6];
|
inv[6] =
|
-s[0] * s[6] * s[15] +
|
s[0] * s[7] * s[14] +
|
s[4] * s[2] * s[15] -
|
s[4] * s[3] * s[14] -
|
s[12] * s[2] * s[7] +
|
s[12] * s[3] * s[6];
|
inv[10] =
|
s[0] * s[5] * s[15] -
|
s[0] * s[7] * s[13] -
|
s[4] * s[1] * s[15] +
|
s[4] * s[3] * s[13] +
|
s[12] * s[1] * s[7] -
|
s[12] * s[3] * s[5];
|
inv[14] =
|
-s[0] * s[5] * s[14] +
|
s[0] * s[6] * s[13] +
|
s[4] * s[1] * s[14] -
|
s[4] * s[2] * s[13] -
|
s[12] * s[1] * s[6] +
|
s[12] * s[2] * s[5];
|
|
inv[3] =
|
-s[1] * s[6] * s[11] +
|
s[1] * s[7] * s[10] +
|
s[5] * s[2] * s[11] -
|
s[5] * s[3] * s[10] -
|
s[9] * s[2] * s[7] +
|
s[9] * s[3] * s[6];
|
inv[7] =
|
s[0] * s[6] * s[11] -
|
s[0] * s[7] * s[10] -
|
s[4] * s[2] * s[11] +
|
s[4] * s[3] * s[10] +
|
s[8] * s[2] * s[7] -
|
s[8] * s[3] * s[6];
|
inv[11] =
|
-s[0] * s[5] * s[11] +
|
s[0] * s[7] * s[9] +
|
s[4] * s[1] * s[11] -
|
s[4] * s[3] * s[9] -
|
s[8] * s[1] * s[7] +
|
s[8] * s[3] * s[5];
|
inv[15] =
|
s[0] * s[5] * s[10] -
|
s[0] * s[6] * s[9] -
|
s[4] * s[1] * s[10] +
|
s[4] * s[2] * s[9] +
|
s[8] * s[1] * s[6] -
|
s[8] * s[2] * s[5];
|
|
det = s[0] * inv[0] + s[1] * inv[4] + s[2] * inv[8] + s[3] * inv[12];
|
if (det === 0) {
|
return this;
|
}
|
|
det = 1 / det;
|
for (i = 0; i < 16; i++) {
|
d[i] = inv[i] * det;
|
}
|
|
return this;
|
};
|
|
/**
|
* Calculate the inverse matrix of this, and set to this.
|
* @return this
|
*/
|
Matrix4.prototype.invert = function () {
|
return this.setInverseOf(this);
|
};
|
|
/**
|
* Set the orthographic projection matrix.
|
* @param left The coordinate of the left of clipping plane.
|
* @param right The coordinate of the right of clipping plane.
|
* @param bottom The coordinate of the bottom of clipping plane.
|
* @param top The coordinate of the top top clipping plane.
|
* @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer.
|
* @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer.
|
* @return this
|
*/
|
Matrix4.prototype.setOrtho = function (left, right, bottom, top, near, far) {
|
var e, rw, rh, rd;
|
|
if (left === right || bottom === top || near === far) {
|
throw "null frustum";
|
}
|
|
rw = 1 / (right - left);
|
rh = 1 / (top - bottom);
|
rd = 1 / (far - near);
|
|
e = this.elements;
|
|
e[0] = 2 * rw;
|
e[1] = 0;
|
e[2] = 0;
|
e[3] = 0;
|
|
e[4] = 0;
|
e[5] = 2 * rh;
|
e[6] = 0;
|
e[7] = 0;
|
|
e[8] = 0;
|
e[9] = 0;
|
e[10] = -2 * rd;
|
e[11] = 0;
|
|
e[12] = -(right + left) * rw;
|
e[13] = -(top + bottom) * rh;
|
e[14] = -(far + near) * rd;
|
e[15] = 1;
|
|
return this;
|
};
|
|
/**
|
* Multiply the orthographic projection matrix from the right.
|
* @param left The coordinate of the left of clipping plane.
|
* @param right The coordinate of the right of clipping plane.
|
* @param bottom The coordinate of the bottom of clipping plane.
|
* @param top The coordinate of the top top clipping plane.
|
* @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer.
|
* @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer.
|
* @return this
|
*/
|
Matrix4.prototype.ortho = function (left, right, bottom, top, near, far) {
|
return this.concat(
|
new Matrix4().setOrtho(left, right, bottom, top, near, far)
|
);
|
};
|
|
/**
|
* Set the perspective projection matrix.
|
* @param left The coordinate of the left of clipping plane.
|
* @param right The coordinate of the right of clipping plane.
|
* @param bottom The coordinate of the bottom of clipping plane.
|
* @param top The coordinate of the top top clipping plane.
|
* @param near The distances to the nearer depth clipping plane. This value must be plus value.
|
* @param far The distances to the farther depth clipping plane. This value must be plus value.
|
* @return this
|
*/
|
Matrix4.prototype.setFrustum = function (left, right, bottom, top, near, far) {
|
var e, rw, rh, rd;
|
|
if (left === right || top === bottom || near === far) {
|
throw "null frustum";
|
}
|
if (near <= 0) {
|
throw "near <= 0";
|
}
|
if (far <= 0) {
|
throw "far <= 0";
|
}
|
|
rw = 1 / (right - left);
|
rh = 1 / (top - bottom);
|
rd = 1 / (far - near);
|
|
e = this.elements;
|
|
e[0] = 2 * near * rw;
|
e[1] = 0;
|
e[2] = 0;
|
e[3] = 0;
|
|
e[4] = 0;
|
e[5] = 2 * near * rh;
|
e[6] = 0;
|
e[7] = 0;
|
|
e[8] = (right + left) * rw;
|
e[9] = (top + bottom) * rh;
|
e[10] = -(far + near) * rd;
|
e[11] = -1;
|
|
e[12] = 0;
|
e[13] = 0;
|
e[14] = -2 * near * far * rd;
|
e[15] = 0;
|
|
return this;
|
};
|
|
/**
|
* Multiply the perspective projection matrix from the right.
|
* @param left The coordinate of the left of clipping plane.
|
* @param right The coordinate of the right of clipping plane.
|
* @param bottom The coordinate of the bottom of clipping plane.
|
* @param top The coordinate of the top top clipping plane.
|
* @param near The distances to the nearer depth clipping plane. This value must be plus value.
|
* @param far The distances to the farther depth clipping plane. This value must be plus value.
|
* @return this
|
*/
|
Matrix4.prototype.frustum = function (left, right, bottom, top, near, far) {
|
return this.concat(
|
new Matrix4().setFrustum(left, right, bottom, top, near, far)
|
);
|
};
|
|
/**
|
* Set the perspective projection matrix by fovy and aspect.
|
* @param fovy The angle between the upper and lower sides of the frustum.
|
* @param aspect The aspect ratio of the frustum. (width/height)
|
* @param near The distances to the nearer depth clipping plane. This value must be plus value.
|
* @param far The distances to the farther depth clipping plane. This value must be plus value.
|
* @return this
|
*/
|
Matrix4.prototype.setPerspective = function (fovy, aspect, near, far) {
|
var e, rd, s, ct;
|
|
if (near === far || aspect === 0) {
|
throw "null frustum";
|
}
|
if (near <= 0) {
|
throw "near <= 0";
|
}
|
if (far <= 0) {
|
throw "far <= 0";
|
}
|
|
fovy = (Math.PI * fovy) / 180 / 2;
|
s = Math.sin(fovy);
|
if (s === 0) {
|
throw "null frustum";
|
}
|
|
rd = 1 / (far - near);
|
ct = Math.cos(fovy) / s;
|
|
e = this.elements;
|
|
e[0] = ct / aspect;
|
e[1] = 0;
|
e[2] = 0;
|
e[3] = 0;
|
|
e[4] = 0;
|
e[5] = ct;
|
e[6] = 0;
|
e[7] = 0;
|
|
e[8] = 0;
|
e[9] = 0;
|
e[10] = -(far + near) * rd;
|
e[11] = -1;
|
|
e[12] = 0;
|
e[13] = 0;
|
e[14] = -2 * near * far * rd;
|
e[15] = 0;
|
|
return this;
|
};
|
|
/**
|
* Multiply the perspective projection matrix from the right.
|
* @param fovy The angle between the upper and lower sides of the frustum.
|
* @param aspect The aspect ratio of the frustum. (width/height)
|
* @param near The distances to the nearer depth clipping plane. This value must be plus value.
|
* @param far The distances to the farther depth clipping plane. This value must be plus value.
|
* @return this
|
*/
|
Matrix4.prototype.perspective = function (fovy, aspect, near, far) {
|
return this.concat(new Matrix4().setPerspective(fovy, aspect, near, far));
|
};
|
|
/**
|
* Set the matrix for scaling.
|
* @param x The scale factor along the X axis
|
* @param y The scale factor along the Y axis
|
* @param z The scale factor along the Z axis
|
* @return this
|
*/
|
Matrix4.prototype.setScale = function (x, y, z) {
|
var e = this.elements;
|
e[0] = x;
|
e[4] = 0;
|
e[8] = 0;
|
e[12] = 0;
|
e[1] = 0;
|
e[5] = y;
|
e[9] = 0;
|
e[13] = 0;
|
e[2] = 0;
|
e[6] = 0;
|
e[10] = z;
|
e[14] = 0;
|
e[3] = 0;
|
e[7] = 0;
|
e[11] = 0;
|
e[15] = 1;
|
return this;
|
};
|
|
/**
|
* Multiply the matrix for scaling from the right.
|
* @param x The scale factor along the X axis
|
* @param y The scale factor along the Y axis
|
* @param z The scale factor along the Z axis
|
* @return this
|
*/
|
Matrix4.prototype.scale = function (x, y, z) {
|
var e = this.elements;
|
e[0] *= x;
|
e[4] *= y;
|
e[8] *= z;
|
e[1] *= x;
|
e[5] *= y;
|
e[9] *= z;
|
e[2] *= x;
|
e[6] *= y;
|
e[10] *= z;
|
e[3] *= x;
|
e[7] *= y;
|
e[11] *= z;
|
return this;
|
};
|
|
/**
|
* Set the matrix for translation.
|
* @param x The X value of a translation.
|
* @param y The Y value of a translation.
|
* @param z The Z value of a translation.
|
* @return this
|
*/
|
Matrix4.prototype.setTranslate = function (x, y, z) {
|
var e = this.elements;
|
e[0] = 1;
|
e[4] = 0;
|
e[8] = 0;
|
e[12] = x;
|
e[1] = 0;
|
e[5] = 1;
|
e[9] = 0;
|
e[13] = y;
|
e[2] = 0;
|
e[6] = 0;
|
e[10] = 1;
|
e[14] = z;
|
e[3] = 0;
|
e[7] = 0;
|
e[11] = 0;
|
e[15] = 1;
|
return this;
|
};
|
|
/**
|
* Multiply the matrix for translation from the right.
|
* @param x The X value of a translation.
|
* @param y The Y value of a translation.
|
* @param z The Z value of a translation.
|
* @return this
|
*/
|
Matrix4.prototype.translate = function (x, y, z) {
|
var e = this.elements;
|
e[12] += e[0] * x + e[4] * y + e[8] * z;
|
e[13] += e[1] * x + e[5] * y + e[9] * z;
|
e[14] += e[2] * x + e[6] * y + e[10] * z;
|
e[15] += e[3] * x + e[7] * y + e[11] * z;
|
return this;
|
};
|
|
/**
|
* Set the matrix for rotation.
|
* The vector of rotation axis may not be normalized.
|
* @param angle The angle of rotation (degrees)
|
* @param x The X coordinate of vector of rotation axis.
|
* @param y The Y coordinate of vector of rotation axis.
|
* @param z The Z coordinate of vector of rotation axis.
|
* @return this
|
*/
|
Matrix4.prototype.setRotate = function (angle, x, y, z) {
|
var e, s, c, len, rlen, nc, xy, yz, zx, xs, ys, zs;
|
|
angle = (Math.PI * angle) / 180;
|
e = this.elements;
|
|
s = Math.sin(angle);
|
c = Math.cos(angle);
|
|
if (0 !== x && 0 === y && 0 === z) {
|
// Rotation around X axis
|
if (x < 0) {
|
s = -s;
|
}
|
e[0] = 1;
|
e[4] = 0;
|
e[8] = 0;
|
e[12] = 0;
|
e[1] = 0;
|
e[5] = c;
|
e[9] = -s;
|
e[13] = 0;
|
e[2] = 0;
|
e[6] = s;
|
e[10] = c;
|
e[14] = 0;
|
e[3] = 0;
|
e[7] = 0;
|
e[11] = 0;
|
e[15] = 1;
|
} else if (0 === x && 0 !== y && 0 === z) {
|
// Rotation around Y axis
|
if (y < 0) {
|
s = -s;
|
}
|
e[0] = c;
|
e[4] = 0;
|
e[8] = s;
|
e[12] = 0;
|
e[1] = 0;
|
e[5] = 1;
|
e[9] = 0;
|
e[13] = 0;
|
e[2] = -s;
|
e[6] = 0;
|
e[10] = c;
|
e[14] = 0;
|
e[3] = 0;
|
e[7] = 0;
|
e[11] = 0;
|
e[15] = 1;
|
} else if (0 === x && 0 === y && 0 !== z) {
|
// Rotation around Z axis
|
if (z < 0) {
|
s = -s;
|
}
|
e[0] = c;
|
e[4] = -s;
|
e[8] = 0;
|
e[12] = 0;
|
e[1] = s;
|
e[5] = c;
|
e[9] = 0;
|
e[13] = 0;
|
e[2] = 0;
|
e[6] = 0;
|
e[10] = 1;
|
e[14] = 0;
|
e[3] = 0;
|
e[7] = 0;
|
e[11] = 0;
|
e[15] = 1;
|
} else {
|
// Rotation around another axis
|
len = Math.sqrt(x * x + y * y + z * z);
|
if (len !== 1) {
|
rlen = 1 / len;
|
x *= rlen;
|
y *= rlen;
|
z *= rlen;
|
}
|
nc = 1 - c;
|
xy = x * y;
|
yz = y * z;
|
zx = z * x;
|
xs = x * s;
|
ys = y * s;
|
zs = z * s;
|
|
e[0] = x * x * nc + c;
|
e[1] = xy * nc + zs;
|
e[2] = zx * nc - ys;
|
e[3] = 0;
|
|
e[4] = xy * nc - zs;
|
e[5] = y * y * nc + c;
|
e[6] = yz * nc + xs;
|
e[7] = 0;
|
|
e[8] = zx * nc + ys;
|
e[9] = yz * nc - xs;
|
e[10] = z * z * nc + c;
|
e[11] = 0;
|
|
e[12] = 0;
|
e[13] = 0;
|
e[14] = 0;
|
e[15] = 1;
|
}
|
|
return this;
|
};
|
|
/**
|
* Multiply the matrix for rotation from the right.
|
* The vector of rotation axis may not be normalized.
|
* @param angle The angle of rotation (degrees)
|
* @param x The X coordinate of vector of rotation axis.
|
* @param y The Y coordinate of vector of rotation axis.
|
* @param z The Z coordinate of vector of rotation axis.
|
* @return this
|
*/
|
Matrix4.prototype.rotate = function (angle, x, y, z) {
|
return this.concat(new Matrix4().setRotate(angle, x, y, z));
|
};
|
|
/**
|
* Set the viewing matrix.
|
* @param eyeX, eyeY, eyeZ The position of the eye point.
|
* @param centerX, centerY, centerZ The position of the reference point.
|
* @param upX, upY, upZ The direction of the up vector.
|
* @return this
|
*/
|
Matrix4.prototype.setLookAt = function (
|
eyeX,
|
eyeY,
|
eyeZ,
|
centerX,
|
centerY,
|
centerZ,
|
upX,
|
upY,
|
upZ
|
) {
|
var e, fx, fy, fz, rlf, sx, sy, sz, rls, ux, uy, uz;
|
|
fx = centerX - eyeX;
|
fy = centerY - eyeY;
|
fz = centerZ - eyeZ;
|
|
// Normalize f.
|
rlf = 1 / Math.sqrt(fx * fx + fy * fy + fz * fz);
|
fx *= rlf;
|
fy *= rlf;
|
fz *= rlf;
|
|
// Calculate cross product of f and up.
|
sx = fy * upZ - fz * upY;
|
sy = fz * upX - fx * upZ;
|
sz = fx * upY - fy * upX;
|
|
// Normalize s.
|
rls = 1 / Math.sqrt(sx * sx + sy * sy + sz * sz);
|
sx *= rls;
|
sy *= rls;
|
sz *= rls;
|
|
// Calculate cross product of s and f.
|
ux = sy * fz - sz * fy;
|
uy = sz * fx - sx * fz;
|
uz = sx * fy - sy * fx;
|
|
// Set to this.
|
e = this.elements;
|
e[0] = sx;
|
e[1] = ux;
|
e[2] = -fx;
|
e[3] = 0;
|
|
e[4] = sy;
|
e[5] = uy;
|
e[6] = -fy;
|
e[7] = 0;
|
|
e[8] = sz;
|
e[9] = uz;
|
e[10] = -fz;
|
e[11] = 0;
|
|
e[12] = 0;
|
e[13] = 0;
|
e[14] = 0;
|
e[15] = 1;
|
|
// Translate.
|
return this.translate(-eyeX, -eyeY, -eyeZ);
|
};
|
|
/**
|
* Multiply the viewing matrix from the right.
|
* @param eyeX, eyeY, eyeZ The position of the eye point.
|
* @param centerX, centerY, centerZ The position of the reference point.
|
* @param upX, upY, upZ The direction of the up vector.
|
* @return this
|
*/
|
Matrix4.prototype.lookAt = function (
|
eyeX,
|
eyeY,
|
eyeZ,
|
centerX,
|
centerY,
|
centerZ,
|
upX,
|
upY,
|
upZ
|
) {
|
return this.concat(
|
new Matrix4().setLookAt(
|
eyeX,
|
eyeY,
|
eyeZ,
|
centerX,
|
centerY,
|
centerZ,
|
upX,
|
upY,
|
upZ
|
)
|
);
|
};
|
|
/**
|
* Multiply the matrix for project vertex to plane from the right.
|
* @param plane The array[A, B, C, D] of the equation of plane "Ax + By + Cz + D = 0".
|
* @param light The array which stored coordinates of the light. if light[3]=0, treated as parallel light.
|
* @return this
|
*/
|
Matrix4.prototype.dropShadow = function (plane, light) {
|
var mat = new Matrix4();
|
var e = mat.elements;
|
|
var dot =
|
plane[0] * light[0] +
|
plane[1] * light[1] +
|
plane[2] * light[2] +
|
plane[3] * light[3];
|
|
e[0] = dot - light[0] * plane[0];
|
e[1] = -light[1] * plane[0];
|
e[2] = -light[2] * plane[0];
|
e[3] = -light[3] * plane[0];
|
|
e[4] = -light[0] * plane[1];
|
e[5] = dot - light[1] * plane[1];
|
e[6] = -light[2] * plane[1];
|
e[7] = -light[3] * plane[1];
|
|
e[8] = -light[0] * plane[2];
|
e[9] = -light[1] * plane[2];
|
e[10] = dot - light[2] * plane[2];
|
e[11] = -light[3] * plane[2];
|
|
e[12] = -light[0] * plane[3];
|
e[13] = -light[1] * plane[3];
|
e[14] = -light[2] * plane[3];
|
e[15] = dot - light[3] * plane[3];
|
|
return this.concat(mat);
|
};
|
|
/**
|
* Multiply the matrix for project vertex to plane from the right.(Projected by parallel light.)
|
* @param normX, normY, normZ The normal vector of the plane.(Not necessary to be normalized.)
|
* @param planeX, planeY, planeZ The coordinate of arbitrary points on a plane.
|
* @param lightX, lightY, lightZ The vector of the direction of light.(Not necessary to be normalized.)
|
* @return this
|
*/
|
Matrix4.prototype.dropShadowDirectionally = function (
|
normX,
|
normY,
|
normZ,
|
planeX,
|
planeY,
|
planeZ,
|
lightX,
|
lightY,
|
lightZ
|
) {
|
var a = planeX * normX + planeY * normY + planeZ * normZ;
|
return this.dropShadow(
|
[normX, normY, normZ, -a],
|
[lightX, lightY, lightZ, 0]
|
);
|
};
|
|
/**
|
* Constructor of Vector3
|
* If opt_src is specified, new vector is initialized by opt_src.
|
* @param opt_src source vector(option)
|
*/
|
var Vector3 = function (opt_src) {
|
var v = new Float32Array(3);
|
if (opt_src && typeof opt_src === "object") {
|
v[0] = opt_src[0];
|
v[1] = opt_src[1];
|
v[2] = opt_src[2];
|
}
|
this.elements = v;
|
};
|
|
/**
|
* Normalize.
|
* @return this
|
*/
|
Vector3.prototype.normalize = function () {
|
var v = this.elements;
|
var c = v[0],
|
d = v[1],
|
e = v[2],
|
g = Math.sqrt(c * c + d * d + e * e);
|
if (g) {
|
if (g == 1) return this;
|
} else {
|
v[0] = 0;
|
v[1] = 0;
|
v[2] = 0;
|
return this;
|
}
|
g = 1 / g;
|
v[0] = c * g;
|
v[1] = d * g;
|
v[2] = e * g;
|
return this;
|
};
|
|
/**
|
* Constructor of Vector4
|
* If opt_src is specified, new vector is initialized by opt_src.
|
* @param opt_src source vector(option)
|
*/
|
var Vector4 = function (opt_src) {
|
var v = new Float32Array(4);
|
if (opt_src && typeof opt_src === "object") {
|
v[0] = opt_src[0];
|
v[1] = opt_src[1];
|
v[2] = opt_src[2];
|
v[3] = opt_src[3];
|
}
|
this.elements = v;
|
};
|
export default Matrix4;
|